Given:
12.0 M HCl
2.0 liters of a 3.0 M HCl
Required:
volume of concentrated hydrochloric acid
Solution:
M1V1 = M2V2
(12.0 M HCl)V1 = (3.0 M HCl)( 2.0 liters)
V1 = (3.0 M HCl)( 2.0 liters)/ (12.0
M HCl)
V1 = 0.5 liters
As we know that 760 mmHg is equal to 1 atm.
So,
If 760 mmHg is equal to = 1 atm
Then
738 mmHg will be equal to = X atm
Solving for X,
X = (738 mmHg × 1 atm) ÷ 760 mmHg
X = 0.971 atm
Result:
738 mmHg is equal to 0.971 atm.
There is no element in 2s3
Answer:
Q = 0.50
No
Left
Explanation:
At a generic reversible equation
aA + bB ⇄ cC + dD
The reaction coefficient (Q) is the ratio of the substances concentrations:
![Q = \frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
Solids and liquid water are not considered in this calculus.
When the reaction achieves equilibrium (concentrations are constant), the Q value is named as Kc, which is the equilibrium constant of the reaction. If Q > Kc, it indicates that the concentration of the products is higher, so, the reaction must progress to the left and form more reactants; if Q < Kc, than the concentrations of the reactants, are higher, so, the reaction progress to the right.
In this case:
Q = ![\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Q = 0.50
So, Q > Kc, the reaction is not at equilibrium and it progresses to the left.