Water is formed when this happens
Answer:
have you tried c
Explanation:
the chicken and I don't know if you can make it
The acceleration is defined by force divided by the mass of the object. So, When the smaller object is hit by a small force, it can produce equal acceleration which is same as that of the bigger body hit with large force.
<h3><u>Explanation:</u></h3>
Force is defined as the product of the mass of the body its applied to and the acceleration of the body in the direction of the force. So acceleration is force divided by the mass of the body.
Let the mass of the smaller body be m and that of the larger body be M.
The smaller force applied on the smaller body be f and the larger force applied on the larger body be F.
So acceleration of the larger body = F/M.
Acceleration of the smaller body = f/m.
For the accelerations to be same,
F/M = f/m.
Or F/f = M/m.
So when the ratio of the force applied on two bodies is in ratio of their masses, the acceleration becomes equal.
Answer: d
Explanation:
vmckvjdsvkdsjvdkslvjdskfvhfdvfkcn
Answer: The empirical formula of the compound becomes 
<u>Explanation:</u>
The empirical formula is the chemical formula of the simplest ratio of the number of atoms of each element present in a compound.
We are given:
Mass of C = 48.38 g
Mass of H = 6.74 g
Mass of O = 53.5 g
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
......(1)
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Molar mass of C = 12 g/mol
Molar mass of H = 1 g/mol
Molar mass of O = 16 g/mol
Putting values in equation 1, we get:



- <u>Step 2:</u> Calculating the mole ratio of the given elements.
Calculating the mole fraction of each element by dividing the calculated moles by the least calculated number of moles that is 3.023 moles



- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 1 : 2 : 1
Hence, the empirical formula of the compound becomes 