1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
6

Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days

, working alone, can machine A complete the task?
Physics
1 answer:
Vinvika [58]3 years ago
3 0

your question is missing the given conditions, here is the complete question;

Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

(1) The average time A and B can complete the task working alone is 12.5 days.

(2) It would take machine A 5 more days to complete the task alone than it would take machine B to complete the task

Answer:

Machine A, working alone, can complete the task in 15 days.

Explanation:

As the average is given as 12.5 so,

A+B=2*12.5

A+ B=25

second condition says machine A takes 5 more days to complete the task alone than B so

A=B+5........Eq1

Now from the question statement we can get that

1/A+1/B=1/6, where A is time needed for A to do the task alone and B is the time needed for B to complete the task alone

thus, simplyfing above equation we get as

AB/A+B=6; \\ putting A+B=25 we get

AB/25=6

AB=6*25

AB=150; \\ putting Eq1 we get

(B+5)B=150

B^2+5B-150=0

simplifying the quadratic equation above we get B=10

putting B=10 in Eq1, we get

A+10=25

A=15

Thus, Machine A, working alone, can complete the task in 15 days.

You might be interested in
How do the three types of boundary's work together to keep the Earth at equilibrium?
Maurinko [17]
There are three types: divergent, convergent, and transform boundaries. I hope this helps.
8 0
3 years ago
Read 2 more answers
A sinusoidal wave traveling on a string has a period of 0.20 s, a wavelength of 32 cm, and an amplitude of 3 cm. The speed of th
Finger [1]

Answer:

v = 1.6 \frac{m}{s} *\frac{100cm}{1m}= 160 \frac{cm}{s}

Explanation:

If we have a periodic wave we need to satisfy the following basic relationship:

v = \lambda f

From the last formula we see that the velocity is proportional fo the frequency.

For this case we have the following info given by the problem:

T= 0.2 s, \lambda =32 cm* \frac{1m}{100cm} =0.32 m, A= 3cm*\frac{1m}{100 cm}=0.03 m

We know that the frequency is the reciprocal of the period so we have this formula:

f = \frac{1}{T}

And if we replace we got:

f =\frac{1}{0.2 s}= 5Hz

Now since we have the value for the wavelength we can find the velocity like this:

v = 0.32 m * 5Hz = 1.6 \frac{m}{s}

And if we convert this into cm/s we got:

v = 1.6 \frac{m}{s} *\frac{100cm}{1m}= 160 \frac{cm}{s}

6 0
3 years ago
Kyle has the mass of 54 kg and is jogging at a velocity of m/s. What is Kyle’s kinetic energy
inysia [295]

m = mass = 54 kg

v = velocity = 3 m/s

KE =  (1/2)*m*v^2

KE =  (1/2) * 54 * (3)^2

KE = 243 J

Hope this helps!



3 0
3 years ago
Read 2 more answers
The volume electric charge density of a solid sphere is given by the following equation: The variable r denotes the distance fro
qwelly [4]

Answer:

62.8 μC

Explanation:

Here is the complete question

The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?

Solution

The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ

So,  Q =  ∫∫∫ρdV

Q =  ∫∫∫ρr²sinθdθdrdΦ

Q =  ∫∫∫(0.2r²)r²sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π

So, Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴[∫sinθdθ]drdΦ

Q =  ∫∫0.2r⁴[-cosθ]drdΦ

Q =  ∫∫0.2r⁴-[cosπ - cos0]drdΦ

Q =  ∫∫∫0.2r⁴-[-1 - 1]drdΦ

Q =  ∫∫0.2r⁴-[- 2]drdΦ

Q =  ∫∫0.2r⁴(2)drdΦ

Q =  ∫∫0.4r⁴drdΦ

Q =  ∫0.4r⁴dr∫dΦ

Q =  ∫0.4r⁴dr[Φ]

Q =  ∫0.4r⁴dr[2π - 0]

Q =  ∫0.4r⁴dr[2π]

Q =  ∫0.8πr⁴dr

Q =  0.8π∫r⁴dr

Q =  0.8π[r⁵/5]

Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]

Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]

Q = 0.8π[0.025 m⁵ - 0 m⁵]

Q = 0.8π[0.025 m⁵]

Q = (0.02π mC/m⁵) m⁵

Q = 0.0628 mC

Q = 0.0628 × 10⁻³ C

Q = 62.8 × 10⁻³ × 10⁻³ C

Q = 62.8 × 10⁻⁶ C

Q = 62.8 μC

3 0
2 years ago
By newton third law of motion, we know that if a rocket ship pushes down on the ground, the ground will push back up on the rock
Furkat [3]

We don't know that at all. The 3rd law says that the REaction is opposite and EQUAL to the action.  We don't know where that "twice as much" comes from.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Why is science literacy important?
    8·1 answer
  • A sample of plutonium-239 decays to one-eighth of its original amount after 7.236 x 104 years. What is its half-life?
    11·1 answer
  • The molecules of a substance are moving rapidly in a container. The molecules do not interact with each other. If the container
    15·2 answers
  • What to do if carbon monoxide detector is going off
    9·1 answer
  • Calculate the average speed 
    7·1 answer
  • Cross-country power lines carry voltages of about A. 60 V. B. 120 V. C. 2200 V. D. 120,000 V.
    9·1 answer
  • A 1500 kg car moving with a speed of 20 m/s collides with a utility pole and is brought to rest in 0.30 s. Find the magnitude of
    11·1 answer
  • At an amusement park, a roller coaster carrying nine homosexuals, moving at 18 m/s, jumps its track at a point that is 20 meters
    13·1 answer
  • What are all stars made of
    14·1 answer
  • The term yoga means which of the following:
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!