Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer:
they produce no DIRECT emissions
Explanation:
that is why they are good in cities to reduce air pollution . but sometypes can produce lesser emissions.
Answer:
The equation is balanced
Explanation:
NaCl (aq) + AgNO3(aq) ––> AgCl (s) + NaNO3 (aq)
NaCl (aq) + AgNO3 (aq)
Na = 1 , Cl=1 , Ag = 1 , No3= 1
AgCl (s) + NaNO3 (aq)
Ag = 1 , Cl=1 , Na = 1 , No3= 1
I really hope that this helps. H-F because the difference in electronegativity is the greatest, about 1.9 on the Pauling scale. The term means which bond has the greatest polarity and is thus most similar to an ionic bond, which involves the transfer of an electron (in opposition to covalent bonds, which share electrons). It is H-F because out of all the atoms here bonded with H, ie hydrogen, F is the most electronegative which means it can pull the bonded electrons to itself more than can Cl, O, and N. <span>That means a stronger polarization of the electron cloud forming the bond with hydrogen and therefore a stronger ionic character.</span>