Answer: So let's say you climbed on top of a tree in your backyard and decided you wanted to drop some acorns down at people. We will assume there is no air resistance (we live in some vacuum world) and remembering that the total mechanical energy of the system is constant
Answer:
I think it's a
Explanation:
not sure hssjkskaakakskksskksqoqkakskzksjsj
Answer:
1. Both are made up of two substances that are chemically combined. 2. oxygen(O2) , 3. CARBON (C) , 4. AIR(N2 nixed with O2 AND CO2), 5. CANNOT BE SEPARATED BY PHYSICAL MEANS
Explanation:
<em>HOPE IT HELPS</em>
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
Answer:
<em>The number of electrons transferred in the reaction</em>
Explanation: