Answer:
D
Explanation:
I believe the answer is D.
The correct answer among the choices given is the first option.The teacher most likely is talking about distillation of a mixture. Distillation is a unit operation that separates component substances from a liquid mixture which is shown by the teacher. Also, the most common purifying technique in the production of gasoline is by this process.
Answer: D
Explanation:
A reducing agent is a species that reduces other compounds, and is thereby oxidized. The whole compound becomes the reducing agent. In other words, of a compound is oxidized, then they are the reducing agent. On the other hand, if the compound is reduced, it is an ozidizing agent.
Since we have established that a reducing agent is the compound being oxidized, we know that A is not our answer. An oxidized compound is losing electrons. Choice A states exactly this.
For B, this is true as we have established this already.
C is also correct. Since a reducing agent loses electrons, it becomes more positive. This makes the oxidation number increase.
D would be our correct answer. It is actually a good oxidizing agent is a metal in a high oxidation state, such as Mn⁷⁺.
Answer:
It's not atom it is an element Strontium.
Answer:
0.24M
Explanation:
The equation for the reaction is given below:
H2SO4 + 2KOH → K2SO4 + 2H2O
From the equation above, we obtained the following information:
nA (mole of acid) = 1
nB (mole of base) = 2
Data obtained from the question include:
Va (volume of the acid) = 12mL
Ca (concentration of the acid) =?
Vb (volume of the base) = 36mL
Cb (concentration of the base) = 0.16 M
The Ca (concentration of the acid) can be obtained as follow:
CaVa/CbVb = nA/nB
Ca x 12 / 0.16 x 36 = 1 /2
Cross multiply to express in linear form as shown below:
Ca x 12 x 2 = 0.16 x 36
Divide both side by 12 x 2
Ca = 0.16 x 36/ 12 x 2
Ca = 0.24M
Therefore, the concentration of the acid is 0.24M