Answer:
a)
a = 2 [m/s^2]
b)
a = 1.6 [m/s^2]
c)
xt = 2100 [m]
Explanation:
In order to solve this problem we must use kinematics equations. But first we must identify what kind of movement is being studied.
a)
When the car moves from rest to 40 [m/s] by 20 [s], it has a uniformly accelerated movement, in this way we can calculate the acceleration by means of the following equation:

where:
Vf = final velocity = 40 [m/s]
Vi = initial velocity = 0 (starting from rest)
a = acceleration [m/s^2]
t = time = 20 [s]
40 = 0 + (a*20)
a = 2 [m/s^2]
The distance can be calculates as follows:

where:
x1 = distance [m]
40^2 = 0 + (2*2*x1)
x1 = 400 [m]
Now the car maintains its speed of 40 [m/s] for 30 seconds, we must calculate the distance x2 by means of the following equation, it is important to emphasize that this movement is at a constant speed.
v = x2/t2
where:
x2 = distance [m]
t2 = 30 [s]
x2 = 40*30
x2 = 1200 [m]
b)
Immediately after a change of speed occurs, such that the previous final speed becomes the initial speed, the new Final speed corresponds to zero, since the car stops completely.

Note: the negative sign of the equation means that the car is stopping, i.e. slowing down.
0 = 40 - (a *25)
a = 40/25
a = 1.6 [m/s^2]
The distance can be calculates as follows:

0 = (40^2) - (2*1.6*x3)
x3 = 500 [m]
c)
Now we sum all the distances calculated:
xt = x1 + x2 + x3
xt = 400 + 1200 + 500
xt = 2100 [m]
Answer:
1.
Jupiter is the largest planet in the solar system. (Image credit: NASA)
The largest planet in the solar system, the gas giant Jupiter is approximately 318 times as massive as Earth. If the mass of all of the other planets in the solar system were combined into one "super planet," Jupiter would still be two and a half times as large.
2.Rotation of Jupiter
[/caption]
Jupiter has the fastest rotation of all the planets in the Solar System, completing one rotation on its axis every 9.9 hours.
3.Jupiter, the King of the Planets, is a gas giant, which means that it's made mostly of gases like hydrogen and helium, and that it doesn't have a solid surface in the way that rocky planets like Earth do. With a temperature of 130 K (-140 C, -230 F), it's so cold that it gives off most of its energy in the infrared. In fact, Jupiter gives off almost twice as much heat as it receives from the Sun. It's able to do this because it has its own internal heat source, powered by the slow gravitational collapse that started when the planet first formed. Astronomers estimate that Jupiter is currently shrinking by almost 2 cm per year
Answer:7 cm/s
Explanation:
Given
Particle move along curve

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s
Differentiating y w.r.t time
Now at (2,3)
