<span> answer>>>>electric force <<<<by the way i don't like physics but i answer this for you ^-^</span>
<span>This is because centripetal force is just the net force of a circular motion. There are no attractive or repulsive forces here. This is not the case here. </span>
<span>The gravitational force is a force reliant on mass and attraction of the masses. There are attractive forces here, but not really repulsive forces. </span>
<span>The electric force is the only one that would make sense because it has to do with a relationship between charges and includes both repulsive and attractive forces.</span>
Answer:
1.08
Explanation:
This is the case of interference in thin films in which interference bands are formed due to constructive interference of two reflected light waves , one from upper layer and the other from lower layer . If t be the thickness and μ be the refractive index then
path difference created will be 2μ t.
For light coming from rarer to denser medium , a phase change of π occurs additionally after reflection from denser medium, here, two times, once from upper layer and then from the lower layer , so for constructive interference
path diff = nλ , for minimum t , n =1
path diff = λ
2μ t. = λ
μ = λ / 2t
= 626 / 2 x 290
= 1.08
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed

Where, v = speed
a = acceleration
t = time
Put the value into the formula


Hence, The gazelles top speed is 27.3 m/s.
Answer:
greater
Explanation:
the speed of sound in steel is greater than water. the speed of sound in wood is not, In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next. This means that the sound wave travels over four times faster than it would in air, but it takes a lot of energy to start the vibration.
Wood is less dense and force can make a sound.
Answer:
1020 km
Explanation:
A complete rotation of the wheel equals a distance of 1 circumference.
The circumference is

where <em>d</em> is the diameter of the wheel.
300,000 rotations = 
In kilometers, this is = 1017876/1000 km = 1020 km