1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
5

According to the Second Law of Thermodynamics, a. any process during which the entropy of the universe increases will be product

-favored. b. heat will always be transferred from a cooler object to a warmer object. c. any process during which the entropy of the system increases will be product-favored. d. any process which is endothermic will be product-favored. e. the total amount of matter in the universe remains constant.
Physics
1 answer:
Iteru [2.4K]3 years ago
4 0

Answer:

The correct option is;

a. Any process in which the entropy of the universe increases will be product-favored

Explanation:

According to the second law of thermodynamics, the change in entropy of a closed system with time is always positive. That is the entropy of the entire universe, considered as an isolated system, always increases with time, hence the entropy change in the universe will always be positive.

\Delta S_{universe} = \Delta S_{system}  + \Delta S_{surroundings} >0

Therefore, any process in which the entropy of the universe increases will be product favored.

You might be interested in
What did Thomson’s and Rutherford’s experiments have in common? They both used charged particles in their experiments. They both
Triss [41]

Answer:

Both Thomson and Rutherford used charged particles in their experiments.

Explanation:

6 0
3 years ago
Read 2 more answers
Carlos was camping and getting cold as the sun went down. He wanted to light a fire for warmth and light. However, he discovered
storchak [24]
1. The chemical reaction produced by Carlo's fire is exergonic because energy is "going out". As the reaction proceeds, entropy increases as the energy stored in the dry wood and leaves are used up as fuel to create the fire which produces low quality light and warmth.  

2. This reaction is a classic example of an exothermic reaction. Exothermic reactions are characterized with the presence of heat and light in the products. Combustion reactions are always exothermic in nature.

3. Catalyst are substances that are used to speed up reactions by lowering the activation requirement. Catalysts aren't consumed in the reaction and can still be chemically retrieved afterwards. In this situation, the leaves cannot be retrieved after the reaction ends. The leaves speed up the heating of the wood but it does not behave as a catalyst. 
6 0
3 years ago
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
gulaghasi [49]

A. 0.77 A

Using the relationship:

P=\frac{V^2}{R}

where P is the power, V is the voltage, and R the resistance, we can find the resistance of each bulb.

For the first light bulb, P = 60 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{60 W}=240 \Omega

For the second light bulb, P = 200 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{200 W}=72 \Omega

The two light bulbs are connected in series, so their equivalent resistance is

R=R_1 + R_2 = 240 \Omega + 72 \Omega =312 \Omega

The two light bulbs are connected to a voltage of

V  = 240 V

So we can find the current through the two bulbs by using Ohm's law:

I=\frac{V}{R}=\frac{240 V}{312 \Omega}=0.77 A

B. 142.3 W

The power dissipated in the first bulb is given by:

P_1=I^2 R_1

where

I = 0.77 A is the current

R_1 = 240 \Omega is the resistance of the bulb

Substituting numbers, we get

P_1 = (0.77 A)^2 (240 \Omega)=142.3 W

C. 42.7 W

The power dissipated in the second bulb is given by:

P_2=I^2 R_2

where

I = 0.77 A is the current

R_2 = 72 \Omega is the resistance of the bulb

Substituting numbers, we get

P_2 = (0.77 A)^2 (72 \Omega)=42.7 W

D. The 60-W bulb burns out very quickly

The power dissipated by the resistance of each light bulb is equal to:

P=\frac{E}{t}

where

E is the amount of energy dissipated

t is the time interval

From part B and C we see that the 60 W bulb dissipates more power (142.3 W) than the 200-W bulb (42.7 W). This means that the first bulb dissipates energy faster than the second bulb, so it also burns out faster.

7 0
3 years ago
A car travels on a straight, level road. (a) Starting from rest, the car is going 38 ft/s (26 mi/h) at the end of 4.0 s. What is
lbvjy [14]

Answer:

a)9.5\frac{ft}{s^2}\\ b) 12.66\frac{ft}{s^2}

Explanation:

A body has acceleration when there is a change in the velocity vector, either in magnitude or direction. In this case we only have a change in magnitude. The average acceleration represents the speed variation that takes place in a given time interval.

a)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{38\frac{ft}{s}-0}{4 s- 0}=9.5\frac{ft}{s^2}\\

b)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{76\frac{ft}{s}-38\frac{ft}{s}}{7 s- 4s}\\a_{avg}=\frac{38\frac{ft}{s}}{3s}=12.66\frac{ft}{s^2}

8 0
3 years ago
How are vectors quantities important to us in our daily life
FromTheMoon [43]

Answer:

they help us allocate a particular place in case one needs to allocate or find a place or something

8 0
3 years ago
Other questions:
  • Science and technology are interdependent. Advances in one lead to advances in the other.Give an example of this phenomenon.
    11·1 answer
  • Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object. For an object t
    15·1 answer
  • (a) What resonant frequency would you expect from blowing across the top of an empty soda bottle that is 18 cm deep, if you assu
    6·1 answer
  • Which of the following experiments or phenomena provided evidence for the particle nature of light?
    7·2 answers
  • All the planets in the solar system have ____ except for mercury and venus?
    15·1 answer
  • What is the difference between speed and velocity?
    14·1 answer
  • Is there any terminal identification mark for rheostat as positive, negative?
    12·1 answer
  • The unit of potential is the?
    14·1 answer
  • 3- Define light year. What quantity does it measure? what is one light year equal to in sl unit?​
    15·1 answer
  • Calculate the force between two small charged spheres having charges of 3×10−7 C and 4×10−7 C placed 20 cm apart.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!