1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
2 years ago
15

In a science museum, a 110 kg brass pendulum bob swings at the end of a 13.9 m -long wire. the pendulum is started at exactly 8:

00 a.m. every morning by pulling it 1.2 m to the side and releasing it. because of its compact shape and smooth surface, the pendulum's damping constant is only 0.010kg/s.
at exactly 12:00 noon, how many oscillations will the pendulum have completed?
what is its amplitude at noon?
Physics
1 answer:
saw5 [17]2 years ago
5 0

The number of oscillations completed by the pendulum is 2736.

The amplitude of the pendulum is 3.47 m.

The given motion is an underdamped motion. So its frequency will be similar to that of a simple harmonic motion.

The frequency of oscillation is defined as the number of oscillations completed in unit time. It is calculated using the formula.

f=(1/2π)*√(l/g)

where f is the frequency, l is the length of the pendulum, and g is the acceleration due to gravity.

Given the length of the wire l=13.9 m and acceleration due to gravity g=9.8 m/s^2. The frequency of oscillation is:

f=(1/(2*3.14)) * √(13.9/9.8)

f=0.19 Hz (approximately)

Since the pendulum started oscillating at 8:00 am, 4 hours has been passed when it shows 12:00 pm. So time t=4 hours or t=4*3600. Hence t=14400 s. The total number of oscillations is then given by the formula,

n=ft

where n is the number of oscillations.

n=0.19*14400=2736.

In damping motion, the amplitude of the pendulum decreases with time. The amplitude of the pendulum is given by the formula,

A' = A exp (-b*t)

where A' is the amplitude after time t, A is the initial amplitude, b is the damping constant, and t is the time.

Here A=1.2 m, b=0.010 kg/s and t=14400 s.

A' = 1.2 exp (-0.010*14400)

A'=3.47 m (approximately)

Learn more about amplitude.

brainly.com/question/21632362

#SPJ4

You might be interested in
What accurately describes the relationship between brain damage and language impairment?
nirvana33 [79]
The level and type of impairment determine the severity and location of the injury.
4 0
3 years ago
Read 2 more answers
Why is a human powered generator better than the sun (solar cells)?
zheka24 [161]

Answer:

we can not use the suns energy too effectively in power cells and with human power we can generate more energy

6 0
3 years ago
Meher is riding a bicycle on a slope. explain the different motions taking place during this time​
gtnhenbr [62]

Answer:

Mehar cant ride down the slope

Explanation:

She does not has a bicycle

7 0
3 years ago
A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the
Novay_Z [31]

Answer:

It will be cut in half

Explanation:

The diffraction of a slit is given by the formula

a sin θ = m where

a = width of the slit,

λ = wavelength and

m = integer that determines the order of diffraction.

Next we divide both sides by a, we have

sin θ = m λ / a

Also, recall that

a’ = 2 a

Then we substitute in the previous equation

2asin θ' = m λ, if divide by 2a, we have

sin θ' = (m λ / 2a).

Now again, from the first equation, we said that sin θ = m λ / a, so we substitute

sin θ ’= sin θ / 2

Then we use trigonometry to find the width, we say

tan θ = y / L

Since the angle is small, we then have

tan θ = sin θ / cos θ

tan θ = sin θ, this then means that

sin θ = y / L

we will then substitute

y’ / L = y/L 1/2

y' = y / 2

this means that when the slit width is doubled the pattern width will then be halved

4 0
3 years ago
Calculate the Poynting vector at the surface of the filament, associated with the static electric field producing the current an
Vesnalui [34]

We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.

S = P/A

  = I2R/ 2πrL

 = 332 kW/m2

Always pointing away from the wire, this Poynting vector.

<h3>What is the Poynting vector?</h3>

Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.

To learn more about Poynting vector, visit:

<u>brainly.com/question/17330899</u>

#SPJ4

7 0
1 year ago
Other questions:
  • Which describes the force between two magnets when their south poles are almost touching?
    6·2 answers
  • Which one of the following is a balanced equation?
    5·1 answer
  • Three blocks are arranged in a stack on a frictionless horizontal surface. The bottom block has a mass of 37.0 kg. A block of ma
    9·1 answer
  • What is the usual time ice takes to evaporate above a Bunsen burner?
    13·1 answer
  • In some amazing situations, people have survived falling large distances when the surface they land on is soft enough. During a
    13·1 answer
  • A simple pendulum takes 2.20 s to make one compete swing. If we now triple the length, how long will it take for one complete sw
    7·1 answer
  • At the instant a 2.0-kg particle has a velocity of 4.0 m/s in the positive x direction, a 3.0-kg particle has a velocity of 5.0
    14·1 answer
  • What is potential energy
    13·1 answer
  • A train travels 120 km at a speed of 60 km/h, makes a stop for 0.5 h, and then travels the next 180 km at a speed of 90 km/h. Wh
    8·1 answer
  • The average reaction time is 1.5 seconds?<br><br> True<br> False
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!