The bonds in a substance breaks down in a phase change from liquid to gas and the molecules move independently of each other.
It is conventional to describe chemical bonds with the aid of elastic materials such as a rubber band. This analogy can only apply to covalent bonds between atoms in which the bonds between atoms are stretched.
However, in discussing the bonds in a substance when considering phase changes, this analogy breaks down because for a phase change from liquid to gas, the bonds break completely and particles can move independently of each other.
Learn more: brainly.com/question/6111443
Answer:
4.62 M
Explanation:
Molarity = moles/volumes (L), so you need to find the moles and the volumes in liters.
Finding the volume is easy because you just have to convert mL to L, so the volume is 0.45 L
Next, find the moles. You can do this by using the molar mass of aluminum to convert the grams to moles. The molar mass of aluminum is 26.98 g/mol.
56 g * (1 mol/26.98 g) = 2.08 mol
Now, divide the moles (2.08) by the volume (.45 L)
Molarity = 4.62 M
Answer:
d Rubidium
Explanation:
The atomic radius of an atom is the distance from the center of the nucleus to its outermost electron.
The atomic radius of elements varies in the periodic table, it increases as you go down in a group and decreases along the period from left to right.
All the elements listed: Hydrogen, Sodium, Lithium and Rubidium belong to the same group in the periodic table (group 1), Since atomic radius increases from top to bottom in a group, Rubidium has the largest atomic radius.
Answer:
See the answer below
Explanation:
1. Organisms produce energy for cells by chemically breaking down and unlocking the energy locked-up within food materials in a process known as cellular respiration. The unlocked energy is then utilized for the cell's metabolic activities.
2. Cellular respiration can be aerobic or anaerobic.
Aerobic respiration involves the breakdown of carbohydrates in the presence of oxygen to yield energy in the form of ATP while carbon dioxide and water are produced as by-products.

Anaerobic respiration involves the breakdown of carbohydrates in the absence of oxygen to produce ATP and lactic acid as a by-product. The lactic acid is later oxidized to carbon dioxide and water to prevent it from building up.

3. Photosynthesis and cellular respiration are both considered metabolic processes that take place in living organisms. However, photosynthesis is peculiar only to green plants and some algae while respiration is common to all living organisms. While photosynthesis is anabolic, that is, it involves the building up of materials; respiration is said to be catabolic because it involves the breaking down of materials.
During photosynthesis, inorganic products are utilized to produce carbohydrates for plants with oxygen gas released as a by-product according to the following equation:

During respiration, the food taken by living organisms is broken down to unlock the energy in it for metabolic activities according to the following equation:
