Explanation:
Please mark me as the brainliest answer
<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>
Answer:

Explanation:
Where E is the magnitude of electric field...
k is called Columb's Constant. It has a value of 8.99 x 109 N m2/C2.
Qs is the magnitude of the source charge...
and r is the magnitude of distance between source and target...
(When electron comes to rest Δt the magnitude of Electric field E become zero momentarily but later achieves the maximum value...)
For the first one, the correct answer would be "<span>Substance changes its form but not its molecular composition.". During a physical change (let's say cutting paper), the substance has its shape changed, but it is still itself (paper).
</span><span>The second one is a bit trickier: </span>
Kinetic energy of a molecule is directly influenced by temperature. If there is a higher temperature it will have a higher kinetic energy which means the molecule moves at a higher velocity. This will increase the chance of particles bouncing off of each other during the chemical reaction. That explains why the rate of reaction will be higher at a higher temperature, rather than higher at a cool temperature. The correct answer would be lower at 39F.