Answer:large
Explanation:
As the temperature increases, materials with large coefficients of linear expansion increases a lot in size
Answer:
The ocean tides on earth are caused by both the moon's gravity and the sun's gravity. ... Even though the sun is much more massive and therefore has stronger overall gravity than the moon, the moon is closer to the earth so that its gravitational gradient is stronger than that of the sun.
Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
Given data:
* The mass of the baseball is 0.31 kg.
* The length of the string is 0.51 m.
* The maximum tension in the string is 7.5 N.
Solution:
The centripetal force acting on the ball at the top of the loop is,
![\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%2Bmg%3D%5Cfrac%7Bmv%5E2%7D%7BL%7D_%7B%7D%20%5C%5C%20v%5E2%3D%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%7D%20%5Cend%7Bgathered%7D)
For the maximum velocity of the ball at the top of the vertical circular motion,
![v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T_%7B%5Cmax%20%7D%2Bmg%29%7D%7Bm%7D%7D)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%287.5_%7B%7D%2B0.31%5Ctimes9.8%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%2810.538%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B17.34%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D4.16%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.
Answer:
Explanation:
Let the intensity of unpolarised light be I₀ . After passing through the first polarising filter , the intensity is I₀ / 2 .
After second filter , the intensity will be I₀ / 2 x cos²45 = I₀ / 4
After third filter , the intensity will be I₀ / 4 x cos²45 = I₀ / 8 .
So,
1 / 8 the of initial light passes through the last filter .