Answer:
Explanation:
When we apply a horizontal force of 76 N to a block, the block moves across the floor at a constant speed. So net force on the block is zero .
It implies that a force ( frictional ) acts on it which is equal to 76 N in opposite direction ( friction )
When we apply a greater force on it it starts moving with acceleration .
This time kinetic friction acts on it due to rough ground equal to 76 N .This is limiting friction ( maximum friction )
Net force on the body in later case
= 89 - 76
= 13 N
Force by ground on the block in horizontal direction = 76 N ( FRICTIONAL FORCE )
=
Answer:
The angle of incidence is greater than the angle of refraction
Explanation:
Refraction occurs when a light wave passes through the boundary between two mediums.
When a ray of light is refracted, it changes speed and direction, according to Snell's Law:
where
:
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence (the angle between the incident ray and the normal to the boundary)
is the angle of refraction (the angle between the refracted ray and the normal to the boundary)
In this problem, we have a ray of light passing from air into clear plastic. We have:
(index of refraction of air)
approx. (index of refraction in clear plastic)
Snell's Law can be rewritten as

And since
, we have

And so

Which means that
The angle of incidence is greater than the angle of refraction
Work = force * distance.
We must produce twice as much energy as we are lifting the weight twice as high.
But we are not increasing the force so we must increase the length of the ramp ( distance ) instead.
The new length will be twice as great as the previous length.
So 8 metres is required.
25 kg * 8 m = work = 100 kg * 2 m
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
Answer:
When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side.