The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed
The answer to your question is Metal
Given parameters:
Mass of the body = 200g
Force on the body = 10N
Unknown parameters:
Acceleration produced by the force = ?
To solve this problem we must first define force in terms of mass and acceleration. This is possible due to the Newton's first law of motion.
Force = mass x acceleration
Here the unknown is acceleration and we can easily solve for it.
But we must take the mass to kilogram in order for it to cancel out.
1000g = 1 kg
200g = x kg =
= 0.2kg
Now input the parameters and solve;
10 = 0.2 x acceleration
Acceleration =
= 50m/s²
The acceleration produced by the body is 50m/s²
Answer:
(C) 40m/s
Explanation:
Given;
spring constant of the catapult, k = 10,000 N/m
compression of the spring, x = 0.5 m
mass of the launched object, m = 1.56 kg
Apply the principle of conservation of energy;
Elastic potential energy of the catapult = kinetic energy of the target launched.
¹/₂kx² = ¹/₂mv²
where;
v is the target's velocity as it leaves the catapult
kx² = mv²
v² = kx² / m
v² = (10000 x 0.5²) / (1.56)
v² = 1602.56
v = √1602.56
v = 40.03 m/s
v ≅ 40 m/s
Therefore, the target's velocity as it leaves the spring is 40 m/s
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object