I am sorry if it didn't helped
answers;
Calculate the buoyant force of a piece of cork of 8cm3 that floats in water. Density of cork is 207kg/m3. ?
I need the mass, in order to get the volume to apply t to the Buoyancy formula of: B=(W)object=(m)object(g)
Explanation:
From Archimedes Principle, any object partially or totally submerged in a fluid is buoyed upwards with a force equal to the weight of the displaced fluid.
∴
B
=
ρ
f
l
V
f
l
g
=
1000
k
g
/
m
3
×
8
×
10
−
6
m
3
×
9
,
8
m
/
s
2
=
0
,
0784
N
(assuming the density of water is at standard temperature and pressure, and that the cork is totally submerged as it floats in the water
it's not the answer of your question ⁉️ but it is similar ........
Answer:
Color, Streak, luster, cleavage and fracture, hardness, crystal shape, and density.
Explanation:
Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P = 
where
f = focal length
Thus
f = 
f =
= + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:

where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,



Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
The answer should be B - lasts longer.