Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
Answer:
white star
Explanation:
because it is the hottest form of a star
<h3>Hello there!</h3>
Here, you are looking for the amount of heat put in for water, at a mass of 187 grams, to change by 80 degrees.
The equation commonly accepted to find the answer to questions like these is the specific heat formula.
The equation is Q = mc∆T, where Q is the amount of energy put in to raise the temperature by a certain amount, m is the mass, c is the specific heat capacity, and ΔT is the amount of temperature change.
The information given:
m = 187 grams
c = specific heat capacity of water, or in this case 1 calorie, or 4.184 joules (which is what we will be using)
ΔT = 80 degrees
Now just plug everything in to solve.
Q = 187 * 4.184 * 80
Q = 62592.64
So you have your answer: 62592.64 joules.
Hope this helped!
Answer:
a) It takes her 1.43 s to reach a speed of 2.00 m/s.
b) Her deceleration is - 2.50 m/s²
Explanation:
The equation of velocity for an object that moves in a straight line with constant acceleration is as follows:
v = v0 + a · t
Where:
v = velocty.
v0 = initial velocity.
a = acceleration.
t = time.
a) Using the equation of velocity, let´s consider that the car moves in the positive direction. Then:
v = v0 + a · t
2.00 m/s = 0 m/s + 1.40 m/s² · t
t = 2.00 m/s / 1.40 m/s²
t = 1.43 s
It takes her 1.43 s to reach a speed of 2.00 m/s
b) Let´s use again the equation of velocity, knowing that at t = 0.800 s the velocity is 0 m/s:
v = v0 + a · t
0 = 2.00 m/s + a · 0.800 s
-2.00 m/s / 0.800 s = a
a = -2.50 m/s²
Her deceleration is - 2.50 m/s²
Answer:
Emergency Room or a Clinic
Explanation:
The Emergency Room if in a hospital. A Clinic may also see patients without insurance, but they're not on Emergency Room grounds.