Answer:
We can think that the line of the kite is the hypotenuse of a triangle rectangle, and the altitude is one of the cathetus of the triangle.
And we know that it makes an angle of 65° with the horizontal (i guess this is measured between the hypotenuse and the horizontal adjacent to the kite.
This angle is complementary to the top angle of our triangle rectangle, such that A + 65° = 90°
A = 90° - 65° = 25°
Then the altitude of the kite is the adjacent cathetus to this angle.
We can use the relation:
sin(A) = Adjacent cathetus/hypotenuse.
Sin(25°) = X/350ft
Sin(25°)*350ft = X = 147.9m
Given:
Consider the equation is:

To prove:
by using the properties of logarithms.
Solution:
We have,

Taking left hand side (LHS), we get

![\left[\because \log_ab=\dfrac{\log_x a}{\log_x b}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbecause%20%5Clog_ab%3D%5Cdfrac%7B%5Clog_x%20a%7D%7B%5Clog_x%20b%7D%5Cright%5D)

![[\because \log x^n=n\log x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog%20x%5En%3Dn%5Clog%20x%5D)

![\left[\because \log_ab=\dfrac{\log_x a}{\log_x b}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbecause%20%5Clog_ab%3D%5Cdfrac%7B%5Clog_x%20a%7D%7B%5Clog_x%20b%7D%5Cright%5D)

Hence proved.
And the question is......................
Answer:
9.9166667
Step-by-step explanation:
All of the numbers equal 59.5 then divide by 6 equals the answer above.