Why don’t you try and draw one, post it and I can tell you if it’s right. Basically use 5 pulleys. 3 and 2
The object may not end up in motion - either if tension is balanced in opposite directions, or if traction is greater than tension.
Roller coasters work by utilizing its potential energy. Potential energy is "lost" as the cars lose height, subsequently gaining kinetic energy as revealed by increased speeds (and loop the loop). As the cars of the roller coaster course through the changing heights, it constantly swaps between potential and kinetic energy. Theoretically, this process could be endless. However, energy is continually "lost" because of dissipative forces such as friction and air resistance.
Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
Answer:
leverage
Explanation:
Leverage ...this allows you to use less force through a longer distance