Yeah i think with a car or a plane:)
Answer:
An elastic collision is a collision in which there is no net loss in kinetic energy in the system as a result of the collision. Both momentum and kinetic energy are conserved quantities inelastic collisions.
Explanation:
Suppose two similar trolleys are traveling toward each other with equal speed. They collide, bouncing off each other with no loss in speed. This collision is perfectly elastic because no energy has been lost. In reality, examples of perfectly elastic collisions are not part of our everyday experience. Some collisions between atoms in gases are examples of perfectly elastic collisions. However, there are some examples of collisions in mechanics where the energy lost can be negligible. These collisions can be considered elastic, even though they are not perfectly elastic. Collisions of rigid billiard balls or the balls in Newton's cradle are two such examples.
Definitely the first: the water molecule is polar. :)
Answer:
Art
Explanation:
Polly's line is linear, while arts line is going up with constant velocity. There for art is going faster.
Answer:
Explanation:
capacitance of each capacitor
C₀= Q₀ / V₀
V₀ = Q₀ / C₀
New total capacitance = C₀ ( 1 + K )
Common potential
= total charge / total capacitance
= 2 Q₀ / [ C₀ ( 1 + K ) ]
2 V₀ / ( 1 + K )
b )
Common potential = 2 x V₀ / ( 1 + 7.8 )
= .227 V₀
charge on capacitor with dielectric
= .227 V₀ x 7.8 C₀
= 1.77 V₀C₀
= 1.77 Q₀
Ratio required = 1.77