Answer: 53.09Hz
Explanation:
The fundamental frequency of an ideal taut string is:
Fn= n/2L(√T/μ)
Where:
F= frequency per second (Hz)
T= Tension of the string (cm/s sqr)
L= Length of the string (cm)
μ= Linear density or mass per unit length of the string in cm/gm
√T/μ= square root of T divided by μ
It is important to note:
Note: Typically, tension would be in newtons, length in meters and linear density in kg/m, but those units are inconvenient for calculations with strings. Here, the smaller units are used.
F1= 1/2(376cm)(0.01/1) × (√574/(0.036g/cm)(0.1kg/m÷1g/cm)
F1= 0.1329 × 399.30
= 53.09Hz
Pseudoscience because it involves beliefs not facts
Answer:
42km/h
Explanation:
Change in km/ Change in time
1.4 x 100
0.033 x100
140km/3.3
= 42.4242 --> 42km/h
<u>Brainliest Appreciated!</u>
1. growl: most certainly the dog is going to start growling, but not in a negative, aggressive way, but rather in a surprised, amused way
2. li.ck: the dog will definitely li.ck you, as this is what dogs do when approached
3. pant: dogs pant all the time, especially if it's hot outside, so hugging them makes no difference
4. play: they will want to play with you once they see you love them and want to be around them
5. try to run: some dogs aren't really into hugging, which is why they will try to run away from you because they are confused
Answer:
12900 W
24200 W
Explanation:
Given:
v₀ = 0 m/s
v = 1.3 m/s
t = 2.0 s
Find: a and Δx
v = at + v₀
(1.3 m/s) = a (2.0 s) + (0 m/s)
a = 0.65 m/s²
Δx = ½ (v + v₀) t
Δx = ½ (1.3 m/s + 0 m/s) (2.0 s)
Δx = 1.3 m
While accelerating:
Newton's second law:
∑F = ma
F − mg = ma
F = m (g + a)
F = (1500 kg + 400 kg) (9.8 m/s² + 0.65 m/s²)
F = 19855 N
Power = work / time
P = W / t
P = Fd / t
P = (19855 N) (1.3 m) / (2.0 s)
P ≈ 12900 W
At constant speed:
Newton's second law:
∑F = ma
F − mg = 0
F = mg
F = (1500 kg + 400 kg) (9.8 m/s²)
F = 18620 N
Power = work / time
P = W / t
P = Fd / t
P = Fv
P = (18620 N) (1.3 m/s)
P ≈ 24200 W