Complete Question
Questions Diagram is attached below
Answer:
* 
* 
* 
Explanation:
From the question we are told that:
Temperature 
Pressure 
Volume
Generally the equation for gas Constant is mathematically given by



Therefore
Work-done



Generally the equation for internal energy is mathematically given by


Therefore



Answer:
Mass = 153.48 g
Explanation:
Given data:
Volume of solution = 2.50 L
Molarity = 0.48 M
Mass required = ?
Solution:
Molarity = number of moles / volume in litter
Number of moles = Molarity × volume in litter
Number of moles = 0.48 M × 2.50 L
Number of moles = 1.2 mol
Mass of HI:
Number of moles = mass/molar mass
Mass = Number of moles × molar mass
Mass = 1.2 mol × 127.9 g/mol
Mass = 153.48 g
Answer:GASEOUS, LOWERING ,EMITTED AS HEAT, DOWN,DO NOT RELEASE,DECREASES,NEGATIVE.
Explanation: Filling the blanks gives
Lattice energy is associated with forming a crystalline lattice of alternating cations and anions from the _GASEOUS___________ ions.
Because the cations are positively charged and the anions are negatively charged, there is a LOWERING of potential- as described by Coulomb's law-when the ions come together to form a lattice energy.That energy is EMITTED AS HEAT when the lattice forms.
As the ionic radii increases as you move DOWN a group, ions cannot get as close to each other and therefore DO NOT RELEASE as much energy when the lattice forms. Thus the lattice energy DECREASES (becomes less) NEGATIVE as the radius increases.
The above gives the definition of Lattice Energy and how it relates to atomic and ion charge.
Answer:
0.017 mole of Pb(NO₃)₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KOH + Pb(NO₃)₂ —> 2KNO₃ + Pb(OH)₂
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted to produce 2 moles of KNO₃.
Finally, we shall determine the number of mole of Pb(NO₃)₂ required to produce 0.034 mole of KNO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted to produce 2 moles of KNO₃.
Therefore, Xmol of Pb(NO₃)₂ will react to produce 0.034 mole of KNO₃ i.e
Xmol of Pb(NO₃)₂ = 0.034 / 2
Xmol of Pb(NO₃)₂ = 0.017 mole.
Thus, 0.017 mole of Pb(NO₃)₂ is needed for the reaction.