Answer: The final temperature of nickel and water is
.
Explanation:
The given data is as follows.
Mass of water, m = 55.0 g,
Initial temp,
,
Final temp,
= ?,
Specific heat of water = 4.184
,
Now, we will calculate the heat energy as follows.
q = 
= 
Also,
mass of Ni, m = 15.0 g,
Initial temperature,
,
Final temperature,
= ?
Specific heat of nickel = 0.444 
Hence, we will calculate the heat energy as follows.
q = 
=
Therefore, heat energy lost by the alloy is equal to the heat energy gained by the water.

= -(
)
= 
Thus, we can conclude that the final temperature of nickel and water is
.
Answer:
About 0.652
Explanation:
Because the reaction is balanced, we can go straight to the next step. The molar mass of potassium is about 39.098, while the molar mass of hydrogen gas is 2 and the molar mass of water is 18. Therefore, 25.5g of potassium would be about 0.652 moles, and 220 grams of water would be about 12.222 moles, making potassium the limiting reactant. Since there is a single unit of each compound on both sides of the equation, there would be an equal amount of moles of potassium and hydrogen, and therefore about 0.652 moles of hydrogen gas would be produced. Hope this helps!
You need to look at the electronegativity and decide wheter the difference of both of the numbers are significant enough to form a polar bond
Answer:
Gases such as carbon dioxide diffuse much more slowly in water than in air. Plants that are fully submerged have greater difficulty obtaining the carbon dioxide they need. To help ameliorate this problem, underwater leaves lack a waxy coating because carbon dioxide is easier to absorb without this layer.
Explanation: