Q or the Reaction Quotient is the interaction between the reactants and products in a given chemical reaction. The value of Q should be compared to the value of K (which is the value of the reaction at equilibrium) in order to determine which way the reaction should move to achieve equilibrium.If Q is already equal to K, then this indicates that the reaction is in equilibrium. If Q>K, then the reactants are converted to products; If Q<K, then the products are converted to reactants. Either way, the reaction proceeds to move towards equilibrium after some time.
Explanation:
The answer would be B.
As paramagnetic with 3 unpaired electrons. Since there are 6 ligands around the Co+2 ion it isoctahedral and these ligands are neutral. This makes the overall charge on the complex +2 and therefore comes from the configuration for Co+2 which is [Ar] 3d7. Since it is in high spin you must fill all the orbitals with at least one electron and then pair up any that remain. If you do this, 3 unpaired electrons remain. Para magnetism occurs in substances with unpaired electrons.
<em>It is beneficial because it provides stronger support for the evidence related to the discovery</em>
<u>Answer:</u> <em>The correct answer is the second option that is given with shows it is beneficial.</em>
<u>Explanation:</u>
The discovery of an element whose properties are known from before would make it easier for the scientists to know the properties of elements and its uses after the discovery of element.
Since the elements’ properties are already known as element that possesses these properties and will look forward to find that and once the element is found the element can be named and can be used directly, since its uses are already known.
Answer:
Chemoautotrophs
Explanation:
Autotrophs are groups of organisms that are capable of manufacturing their own food (organic molecules) through the fixation of carbon dioxide. There are two types of autotrophs:
- <em>Photoautotrophs fix carbon dioxide by using light as the energy for driving the process.</em>
- <em> </em><em>Chemoautotrophs f</em><em>ix carbon dioxide by using energy from the oxidation of inorganic molecules such as magnesium, or sulfur.</em>
Chemoautotrophs usually inhabit extreme environment such hot vents, deep sea, etc.