Answer:
When 0.250 moles of a gas is placed in a container at 25 °C, it exerts a pressure of 700 mm Hg.
Explanation:
<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
The kind of chemical catalysis is covalent catalysis and among the given amino acids lysine will act as a catalyst for the reaction.
The generation of iminium ions in the transition state of the reaction confirms that it is a covalent catalysis. lysine is the only amino acid that can catalyze the iminium ion generated in the transition state of the reaction.
So the answer for the type of catalysis is covalent catalysis, and the answer for the type of amino acid among the given amino acids that can catalyze the reaction is lysine.
Complete question: (Reaction is attached as a picture)
You can also learn about chemical catalysis from the following question:
brainly.com/question/13553173
#SPJ4
Answer:
See detailed reaction equations below
Explanation:
a) Mg(s) +2HBr(aq) ----------------> MgBr2(aq) + H2(g)
b) Ca(ClO3)2(s) ------------> CaCl2(s) + 3O2(g)
c) 3BaBr2(s) +2Na3PO4(aq) ------------> Ba3(PO4)2(s) + 6NaBr(aq)
d) 3AgNO3(aq) + AlI3(aq) --------------> 3AgI(s) + Al(NO3)3(aq)
Balancing reaction equations involves taking valencies and number of atoms of each element on the reactants and products side into consideration respectively.
Opioid's tend to show during runners high, so my guess would most likely be dopamine