<u>Answer:</u> The molality of magnesium chloride is 1.58 m
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (magnesium chloride) = 75.0
= Molar mass of solute (magnesium chloride) = 95.21 g/mol
= Mass of solvent = 500.0 g
Putting values in above equation, we get:

Hence, the molality of magnesium chloride is 1.58 m
Plants that have nigrogen fixing bacteria in their roots are called
legumes.
water plus oxygen equals rust so keep water away from the iron to prevent rusting or dry the iron off then apply alchohol to cleanse it
Considering the definition of molarity, the molar concentration is 0.294
.
Molarity reflects the concentration of a solution indicating the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case, you know:
- amount of moles of solute= 0.250 moles
- volume= 0.850 L
Replacing in the definition of molarity:

Solving:
molarity= 0.294 
Finally, the molar concentration is 0.294
.
Learn more about molarity with this example: brainly.com/question/15406534?referrer=searchResults
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)