Answer:
A) B = 24 ft
B) H = 24.08 ft
C) M.A = 12.04
D) P = 13.7 lb
Explanation:
A)
Minimum allowable length of base of ramp can be found as follows:
Slope = H/B
where,
Slope = 1/12
H = Height of Ramp = 2 ft
B = Length of Base of Ramp = ?
Therefore,
1/12 = 2 ft/B
B = 2 ft * 12
<u>B = 24 ft</u>
B)
The length of the slope of ramp can be found by using pythagora's theorem:
L = √H² + B²
where,
H = Perpendicular = height = 2 ft
B = Base = Length of Base of Ramp = 24 ft
L = Hypotenuse = Length of Slope of Ramp = ?
Therefore,
H = √[(2 ft)² + (24 ft)²]
<u>H = 24.08 ft</u>
D)
The mechanical advantage of an inclined plane is given by the following formula:
M.A = L/H
M.A = 24.08 ft/2 ft
<u>M.A = 12.04</u>
D)
Another general formula for Mechanical Advantage is:
M.A = W/P
where,
W = Ideal Load = 165 lb
P = Ideal Effort Force = ?
Therefore,
12.04 = 165 lb/P
P = 165 lb/12.04
<u>P = 13.7 lb</u>
Answer:
F. 25.82 s
Explanation:
Given:
Δy = 90 m
v₀ = 0 m/s
a = 0.27 m/s²
Find: t
Δy = v₀ t + ½ at²
90 m = (0 m/s) t + ½ (0.27 m/s²) t²
t = 25.82 s
C., used in power plants I think.
The law of conservation of energy states that in any reaction, energy cannot be created or destroyed.
In other words, energy has to be conserved in every reaction.
<span>Archaebacteria and Eubacteria
hope it helps
</span>