Bulbs c and b would still be screwed in if they were in to begin with and bulbs A, D, and E. would be unscrewed
The upper back muscles being worked while using a rowing machine .your upper trapezius and rhomboids located between your shoulder blades, and latissimus dorsi located beneath the armpits
Correct temperature is 80°F
Answer:
T_f = 38.83°F
Explanation:
We are given;
Volume; V = 8 ft³
Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature; T_i = 80°F = 539.67 °R
Time for outlet flow; t_o = 90 s
Mass flow rate at outlet; m'_o = 0.03 lb/s
Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
Where v is initial specific volume
R is ideal gas constant = 53.33 ft.lbf/°R
Thus;
v = RT/P
v_i = 53.33 × 539.67/(100 × 12²)
v_i = 2 ft³/lb
Formula for initial mass is;
m_i = V/v_i
m_i = 8/2
m_i = 4 lb
Now change in mass is given as;
Δm = m'_o × t_o
Δm = 0.03 × 90
Δm = 2.7 lb
Now,
m_f = m_i - Δm
Thus; m_f = 4 - 2.7
m_f = 1.3 lb
Similarly in above;
v_f = V/m_f
v_f = 8/1.3
v_f = 6.154 ft³/lb
Again;
Pv = RT
Thus;
T_f = P_f•v_f/R
T_f = (30 × 12² × 6.154)/53.33
T_f = 498.5°R
Converting to °F gives;
T_f = 38.83°F
The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1
Answer:
An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Explanation:
Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

where;
P is the highest pressure on the aircraft
is the density of air = 1.204 kg/m³ at sea level temperature.
V is the velocity of the aircraft = 220 m/s
P = 0.5*1.204*(220)² = 29136.8 N/m²
Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²