Answer:
V = 19m/s
Explanation:
Given the following data;
Initial velocity, U = 4m/s
Acceleration, a = 0.5m/s²
Time, t = 30 seconds
To find the final velocity, we would use the first equation of motion;
V = U + at
Where;
V is the final velocity.
U is the initial velocity.
a is the acceleration.
t is the time measured in seconds.
V = 4 + 0.5*30
V = 4 + 15
V = 19m/s
Therefore, his final velocity is 19 meters per seconds.
Answer:
D. n=6 to n=2
Explanation:
Given;
energy of emitted photon, E = 3.02 electron volts
The energy levels of a Hydrogen atom is given as; E = -E₀ /n²
where;
E₀ is the energy level of an electron in ground state = -13.6 eV
n is the energy level
From the equation above make n, the subject of the formula;
n² = -E₀ / E
n² = 13.6 eV / 3.02 eV
n² = 4.5
n = √4.5
n = 2
When electron moves from higher energy level to a lower energy level it emits photons;

For a photon to be emitted, electron must move from higher energy level to a lower energy level. The higher energy level is 6 while the lower energy level is 2
Therefore, The electron energy-level transition is from n = 6 to n = 2
<span>So we want to know what kind of wave is the scientist is studying while studying earthquakes. Waves that produce earthquakes are mechanical waves. Gamma rays and radiowaves are both electromagnetic waves and don't require a medium but mechanical do. So the correct answer is mechanical waves.</span>
Answer:
ccccccc. ccccccc ccc ccccccc c
Answer:
Explanation:
Ball rises and falls in equal periods. Because it goes by same speeds and same route. Therefore t_{rise} = t_{fall} =2.5 s
In free fall and vertical throw movement: x= (1/2).a.t^{2}
Here, we can find the height of the ball
x= (1/2).5.(2.5^{2}) = 15.625 m
From the attaches V-t graphics, x=V.t/2
15.624=V.(2.5)/2
V=12.5 m/s