Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
Answer:
a) The astronauts would see the real length of the meter stick, i.e. L₀
b) The length of the meter stick as measured by the stationary observer will be 
Explanation:
a) Let the proper length of the meter stick be L₀
The meter stick and the astronauts on the on the space ship are on the same moving frame, therefore, they will see the exact length of the meter stick, that is, L₀
b) A stationary observer watching the space ship and meter stick travel past them will see a contracted length of the meter stick
The original length = L₀
Let the speed of the space ship = v
The contracted length, L, is related to the original length in the frame of rest by
L = L₀/γ......................(1)
Where γ =
....................(2)
Substituting equation (2) into (1)

Answer:
Acceleration =0
Explanation:
There are two forces on the box in horizontal direction.
First one is horizontal component of 30N at 45°.

Another one is given in opposite to direction of motion mean opposite to this force.
Which is = 2.22 N
Now we know F (net) =mass*acceleration(center of mass)
21.2-21.2 =10*acceleration
acceleration =0
Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
<span>Hot springs and geysers are often found in areas of present or past volcanic activity. The hot spring forms when water deep underground is heated by a nearby body of magma or hot rock. The hot water rises and collects in a natural pool; when rising hot water and steam become trapped in a narrow crack, pressure builds until the mixture sprays above the surface as a geyser.</span>