Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.
Answer:
D) not enough information to decide
Explanation:
Data provided in the question
The True weight of book stacks = 165 N
Reading of the scale = 165 N
Constant velocity = 2 m/s upward or downward
Based on the above information
If you moved at a constant velocity the scale interprets the same because of the momentum you've got. The scale will change the number only when acceleration is present.
Therefore in the given situation, the option D is correct as it not have enough information for deciding it
When sound travels on a certain wave pattern or medium once it hits the surface or surfaces of another wave or mdeium and then it bounces back that is a reflected sound wave.
<span />
The magnitude of the net force causing the 2300kg car to slow down is 6900N
HOW TO CALCULATE FORCE:
- The net force applied on a moving object can be calculated by multiplying the mass of the object by its acceleration. That is;
- Force (N) = mass (kg) × acceleration (m/s²)
- According to this question, a 2300-kg car slows down at a rate of 3.0 m/s2 when approaching a stop sign. The net force causing the car to stop can be calculated as follows:
F = 2300kg × 3m/s²
F = 6900N
- Therefore, the magnitude of the net force causing the 2300kg car to slow down is 6900N.
Learn more at: brainly.com/question/18109210?referrer=searchResults