Answer:
option (a)
Explanation:
To make a galvanometer into voltmeter, we have to connect a high resistance in series combination.
The voltmeter is connected in parallel combination with teh resistor to find the voltage drop across it.
An ideal voltmeter has very high resistance that means it has a resistance as infinity.
Answer:
B = 191.26 cm
θ = -14.73°
Explanation:
given,
magnitude of the first displacement(A) = 146 cm
at an angle of 124°
resultant magnitude = 137 cm
and angle made with x-axis by the resultant(R) = 32.0°
component of A in X and Y direction
A x = A cos θ = 146 cos 120° = -73 cm
A y = A sin θ = 146 sin 120° = 126.4 cm
now component of resultant in x and y direction
R x = 137 cos 35°
= 112.2 cm
R y = 137 sin 35°
= 78.6 cm
resultant is the sum of two vectors
R = A + B
R x = A x + B x
B x = 112.2 - (-73) = 185.2 cm
B y = R y - A y
B y = 78.6 - 126.4 = -47.8 cm
magnitude of B
B = 
B = 
B = 191.26 cm
angle
θ = -14.73°
A) It will be 2 covalent bonds
B) covalent bonds occur when there’s 2 atoms that share electrons. In this case by sharing the 2 pairs of valence electrons each atom has a total of 8 valence electrons
Answer: <span>D. A bimetallic strip bends so that the steel is on the outside curve
</span>
When something has an increased temperature, its volume will expand. Then, if the temperature drops, its volume should be smaller. From there option A and B are out since the liquid in thermometer is expand or move up.
When you put two kinds of different metal with a different coefficient of thermal expansion, the outer curve metal will be the one with lesser coefficient when temperature drop. Since the question about drop in temperature then the metal should be bend
Brass will expand 1.5 times more than the steel so the outer curve would be the steel.