Answer:
(a). The spring compressed is .
(b). The acceleration is 1.5 g.
Explanation:
Given that,
Acceleration = a
mass = m
spring constant = k
(a). We need to calculate the spring compressed
Using balance equation
....(I)
The spring compressed is .
(b). If the compression is 2.5 times larger than it is when the mass sits in a still elevator,
The compression is given by
Here, acceleration is zero
So,
We need to calculate the acceleration
Put the value of x in equation (I)
Hence, (a). The spring compressed is .
(b). The acceleration is 1.5 g.
Answer: Wernicke's aphasia
Explanation:
John recently suffered a blow to his head. Since then, he finds it difficult to comprehend what others say to him. He also finds it difficult to express his thoughts and cannot seem to find the right words to say while speaking. However, he can speak freely with proper syntax. In this scenario, John is most likely suffering from Wernicke's aphasia.
Wernicke's aphasia occurs when the leftward side of the middle of the brain is damaged or has been altered. An individual who suffers from Wernicke's aphasia will have difficulty in speaking in meaningful and coherent sentences or may have difficulty in understanding the speech of others.
<h2>
Answer:7.14,4.125</h2>
Explanation:
Whenever an object is moving in a 2D frame,its motion can be analysed as if it is travelling in two independent 1D frames.
One of such independent 1D frames are along horizontal and another along vertical.
Let be the total velocity.
Given that,
We call the horizontal velocity as and the vertical velocity as .
=
where is the angle between the object and horizontal.
It is given that
Answer: An iron atom emits particles when it is struck by light (by the photoelectric effect)
Explanation:
The first atomic model was the one proposed by Jhon Dalton, according to which it is postulated that:
"Matter is made up of indivisible, indestructible and extremely small particles called atoms."
That is, <u>the atom is a solid and indivisible mass.
</u>
However, the fenomenom by which an iron atom emits particles when it is struck by light (known as the photoelectric effect) can not be explaind by this<u> indivisible atom</u> model.
To understand it better:
The <u>photoelectric effect</u> consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.
This is possible by considering light as a stream of photons, where each of them has energy. <u>This energy is be able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy. </u>This means the atom is not indivisible, but it is a composition of different particles.
In fact, currently it is known that each atom is composed of a nucleus and one or more electrons attached to the nucleus, which is composed of one or more protons and typically a similar number of neutrons.