Answer:
I= 20 i {N.s}
Explanation:
In order to obtain the impulse on the 2 kg ball, you have to apply the equation of Impulse:
I=FΔt
Where I is the impulse vector, F is the net force and Δt is the interval of time when the force is applied.
In this case:
Δt=0.01 s
F= 2000 i N
where i is the unit vector in the x direction.
Replacing the values in the formula:
I=(2000)(0.01)i
Therefore:
I= 20 i {N.s}
It’d fall 29.4m or 96.46ft
Explanation:
Uhh since gravity is 9.8m/s then in three seconds it’d drop 29.4m or 96.46ft
That is assuming there isn’t a lot of wind resistance, but if you take that into account, then it’d probably be somewhere around 25m since the water bottle is going to be heavier than the wind resistance, and since we don’t know the weight of the water bottle it can’t really be calculated.
Hope this helps!
1,) C
2,) C
Hope this helps
Answer:
The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
Explanation:
Given that,
Energy E = 2 eV
Barrier V₀= 5.0 eV
Width = 1.00 nm
We need to calculate the value of 
Using formula of 

Put the value into the formula


(a). We need to calculate the tunnel probability for width 0.5 nm
Using formula of tunnel barrier

Put the value into the formula


(b). We need to calculate the tunnel probability for width 1.00 nm


Hence, The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
Answer:
B most likely
Explanation:
tell me if this is right or wrong