Answer:
If by 1.5 MJ you mean 1.5E6 Joules then
W = P t = power X time
W / t = P power
P = 1.5E6 J / 600 sec = 2500 J / s
P = I V
a) I = 2500 J/s / (240 J/c) = 10.4 C / sec = 10.4 amps
b) Q = I t = 10.4 C / sec * 300 sec = 3120 Coulombs
c) E = P * t = 2500 J / sec * 100 hr * 3600 sec / hr = 9.0E8 Joules
Answer:
Xc= 17.267 Ω, Z= 415.5 Ω, I= 0.537 A
Explanation:
Em = 223 V
f= 300 Hz, R = 222 Ω, L = 147 mH, C = 23.1 μF
a)
Capacitive reactance = Xc=?
Xc= 
Xc=1/2pi *399*23.1*10^-6
Xc= 17.267 Ω
b).
Z=
Xl= 2π * f * L
Xl= 2π * 399 * 147 * 
Xl= 368.5 Ω
Z=
= 
Z= 415.5 Ω
c).
Current:
I= V / Z= Em / Z
I= 223/415.5
I= 0.537 A
Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.