Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:

Answer:
C is the best answer because we all know that clock is part of our daily lives but we don't know the about its background
They are unproven but accepted as fact.
Many experiments support them but they can be disproven by the results of a single experiment. Until then, they stand.
The third statement is correct.
Answer:
198.2m/s
Explanation:
Speed of a wave(v) is the product of the frequency of the wave (f) and its wavelength(¶).
Mathematically, v = f/¶
Given frequency of the middle C = 261.63Hz
Wavelength = 131.87cm
Converting this to meters we have;
131.87/100 = 1.32m
Speed of the sound = 261.63/1.32
Speed of the sound = 198.20m/s
Therefore the speed of sound for middle C is 198.2m/s
Answer:
Acceleration of the platform = - 1.8 m/s²
Explanation:
The net force acting on a body accelerates the body in the same direction as that in which the resultant is applied.
Writing the force balance for the setup,
ma = 800 - mg
100a = 800 - 100×9.8
100a = - 180
100a = - 180
a = - 1.8 m/s²
This means the body falls downwards.