46 is the answer. because if you add 26 and 20 that is the mass
Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M
From the balanced redox equation of the reaction, the coefficient of OH⁻ is 8.
<h3>What is the balanced redox equation of the reaction?</h3>
A redox equation is the equation of a redox reaction in which oxidation and reduction occurs simultaneously.
The given redox reaction takes place in a basic solution
The balanced redox equation of the reaction is given below:
4 H₂O(l) + 3 S²⁻(aq) + 2 NO₃⁻(aq) ---> 3 S(s) + 2 NO + 8 OH⁻(aq)
In conclusion, a redox equation is balanced when oxidation and reduction occur to the same extent.
Learn more about redox equations at: brainly.com/question/26750732
#SPJ1
To solve this problem, we must be given first the density
of air at 20 degrees Celsius. Looking up online, this is equal to:
density air (20C) = 0.0012041 g/mL
so that the volume is:
volume balloon = 0.57 g / (0.0012041
g/mL)
<span>volume balloon = 473.38 mL</span>