D lung cancer is not infectious
Reflection from such a rough surface is called diffuse reflection and appears matte
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
Answer:
the needle will direct its North South according to the magnetic field of current carrying wire.
Explanation:
A current carrying wire always has a magnetic field around it, in circular loops. This magnetic field will be either clockwise or anticlockwise depending on the direction of current.
Right hand rule tells the direction. Place the current carrying wire in your right hand with thumb pointing the direction of current. Curl of the fingers tell the direction of current.
When the needle gets in the vicinity of the field, its poles aligns itself with the field. (previous position of the compass needle has no effect on its position in the field). The north pole and south pole will be set in the direction of magnetic field.
The distance between the needle and wire does effect the strength (accuracy) of the needle position. Strong field will create strong deflection of the needle whereas when the distance from wire increases, field weakens, thus the deflection of needle will be weak.