Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
Answer:
Bulb 1 has more resistance.
Explanation:
Given that,
Two lightbulbs work on a 120-V circuit.
The power of circuit 1, P₁ = 50 W
The power of circuit 2, P₂ = 100 W
We need to find the bulb that has a higher resistance.
The power of the bulb is given by :

For bulb 1,

For bulb 2,

So, bulb 1 has higher resistance.
The three properties of electromagnetic waves are; they travel at the speed of light, they include ultraviolet waves, and they can transfer energy through empty space.
<h2>Further Explanation</h2><h3>A wave</h3>
- A wave is a transmission of a disturbance. It involves transmission of energy from one point which is the source to another point.
- Waves may be classified depending on the need for a transmission medium or based on the vibration of particles relative to the direction of wave motion.
- Waves may be either transverse or longitudinal based on the direction of wave motion relative to the vibration of particles
- Additionally waves may be classified as either electromagnetic wave or mechanical based on the need for a transmission medium.
<h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- All waves of the electromagnetic spectrum are electromagnetic transverse waves that do not require a material medium for transmission.
- They include; radio waves, microwaves, infrared, visible light, ultra-violet, x-rays, and gamma rays.
- All waves of the electromagnetic spectrum travel with a speed of light, 3.0 x10^8 m/s.
- Additionally, electromagnetic waves possess energy that is given by; E = hf; where h is the plank's constant and f is the frequency.
keywords: Wave, electromagnetic wave, electromagnetic spectrum
<h2>Learn more about: </h2>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum
Sub-topic: Properties of an electromagnetic waves
The correct answer is D, Diamond