Answer:
a)
= 4.67m/s
b) V = 8.29 m/s
Explanation:
Givens:
The bullet is 5.30g moving at 963m/s and its speed reduced to 426m/s. The wooden block is 610g.
a) From conservation of linear momentum
Pi = Pf

where
are the mass and the initial velocity of the bullet,
and
are the mass and the initial velocity of the wooden block, and
and
are the final velocities of the wooden block and the bullet
The wooden block is initial at rest
this yields

By solving for
adn substitute the givens
= 
= 
= 4.67m/s
b) The center of mass speed is defined as

substituting:

V = 8.29 m/s
<span>Pressure = force / area</span>
I assume that 350kg is the mass
Therefore,
350 x 9.8 (gravity) = 3430N
3430 / 1 = 3430Pa
3.43 KPa
Here are the 2 reasons:
- Sun damages the eyes
Long-term, unprotected exposure to ultraviolet light from the sun can damage the retina. The retina is the back of the eye, where the rods and cones make visual images, which are then sent to the visual centers in the brain. Damage from exposure to sunlight can also cause the development of cloudy bumps along the edge of the cornea, which can then grow over the cornea and prevent clear vision. UV light is also a factor in the development of cataracts.
- Heat Exhaustion
According to the Centers for Disease Control and Prevention (CDC), heat exhaustion is the body’s response to excessive loss of water and salt, usually through excessive sweating. People working in a hot environment are at risk of heat exhaustion.
Answer:
17. NADH has a molar extinction coefficient of 6200 M2 cm at 340 nm. Calculate the molar concentration of NADH required to obtain an absorbance of 0.1 at 340 nm in a 1-cm path length cuvette. 18. A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an appropriate solvent blank. Tyrosine is known to be the only chromophore present in the sample that has significant absorption at 274 nm. Calculate the molar concentration of tyrosine in the sample.
Explanation: