1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
8

A houseplant is placed on a window sill that gets direct, bright sunlight every afternoon. The plant starts to grow toward the w

indow. What kind of response is described by this situation?
Physics
1 answer:
irakobra [83]3 years ago
4 0

Answer:

phototropism

Explanation:

phototropism is when plants grow toward the sun.

If I helped, please vote brainliest

You might be interested in
A boy pushes a cart with a constant velocity of 0.5m/s by applying a force of 60 N. What is the total frictional force acting on
Nutka1998 [239]

Answer:

60N

Explanation:

in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>

therefore the maximum amount of frictional force is equal to the applied force which is 60N.

because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N

8 0
3 years ago
A soccer player kicks a soccer ball with a force of 1.8 N. If the mass of the ball is .43 kg. How fast will the ball accelerate?
Vesnalui [34]

Answer:

The acceleration of the ball is 4.18 [m/s^2]

Explanation:

By Newton's second law we can find the acceleration of the ball

F = m*a\\where:\\F = force applied [N] or [kg*m/s^2]\\m = mass of the ball [kg]\\a = acceleration [m/s^s]

Now we have:

a = F/m\\a = \frac{1.8 [kg*m/s^s]}{0.43[kg]} \\a = 4.18 [kg]

4 0
3 years ago
Read 2 more answers
Compare blue and red light from the visible spectrum. which has: the longer wavelength? the greater frequency? the greater energ
Hitman42 [59]
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.

2) The frequency f of an electromagnetic wave is related to its wavelength \lambda by the formula
f= \frac{c}{\lambda}
where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.

3) The energy of the photons of an electromagnetic wave is given by
E=hf
where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.
6 0
3 years ago
So, like my previous question, how do you solve for 4/5 - 1/2?
ZanzabumX [31]

Answer:

3/10

Explanation:

4/5(2)

-1/2(5)

8/10-5/10

3/10

6 0
3 years ago
Read 2 more answers
1) Si un mango cae a una velocidad de 75m/s y tarda 26 seg. en caer. ¿ Cuál habrá sido la velocidad con qué el mango llegó al su
Lyrx [107]

Answer:

El mango llega al suelo a una velocidad de 329.982 metros por segundo.

Explanation:

El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:

v = v_{o}+g\cdot t (1)

Donde:

v_{o} - Velocidad inicial, en metros por segundo.

v - Velocidad final, en metros por segundo.

g - Aceleración gravitacional, en metros por segundo al cuadrado.

t - Tiempo, en segundos.

Si sabemos que v_{o} = -75\,\frac{m}{s}, g = -9.807\,\frac{m}{s^{2}} y t = 26\,s, entonces la velocidad final del mango es:

v = v_{o}+g\cdot t

v = -75\,\frac{m}{s}+\left(-9.807\,\frac{m}{s} \right)\cdot (26\,s)

v = -329.982\,\frac{m}{s}

El mango llega al suelo a una velocidad de 329.982 metros por segundo.

8 0
3 years ago
Other questions:
  • You have a sealed glass jar full of air. If you put it in the freezer, what happens to the gas pressure in the jar?
    8·1 answer
  • Which is a land management technique that limits topsoil loss?
    13·2 answers
  • Which is the correct scientific notation of the number 0.000681?
    9·2 answers
  • A cyclist is riding a bicycle at a speed of 22 mph on a horizontal road. The distance between the axles is 42 in., and the mass
    6·1 answer
  • Do you think scientists will ever be able to recreate a living creature from the distant past successfully?
    8·2 answers
  • PLZ HELP!!I WILL MAKE YOUR ANSWER BRAINLIEST!!!!!
    13·1 answer
  • Why does it takes the outer planets so long to orbit the Sun? Try to come up with two reasons.
    14·1 answer
  • Harry and Hagrid needed to get money out of Gringotts bank. The bank cart was accelerating at a rate of 4 m/s2 and it had a mass
    8·2 answers
  • After hitting the spring, the block is bounced back up the ramp. The maximum compression of the spring is Δx=0.03m, and the spri
    10·1 answer
  • A block weighing 30kg is moved at a constant speed over a horizontal surface by a force of 100 N applied parallel
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!