Answer:
an artificial body placed in orbit around the earth or moon or another planet in order to collect information or for communication.
Explanation:
Look it up on google
The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is
.
The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.
The given data:
time, t = 1.1 s
initial speed, u = 1000 km/h = 
final speed, v = 0 m/s
So we will be using the equation of motion, that is,
v = u + at



Hence , the deceleration of the rocket is
.
To learn more about Attention here:
brainly.com/question/28500124
#SPJ4
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
Answer:
the answer is B.
Explanation:
The claim is correct because Student Y can apply a force that is greater in magnitude than the frictional forces that are exerted on the student-student-skateboard system
Answer:
At 81. 52 Deg C its resistance will be 0.31 Ω.
Explanation:
The resistance of wire =
Where
=Resistance of wire at Temperature T
= Resistivity at temperature T ![=\rho_0 \ [1 \ + \alpha\ (T-T_0\ )]](https://tex.z-dn.net/?f=%3D%5Crho_0%20%5C%20%5B1%20%5C%20%2B%20%5Calpha%5C%20%28T-T_0%5C%20%29%5D)
Where 
l=Length of the wire
& A = Area of cross section of wire
For long and thin wire the resistance & resistivity relation will be as follows

![\frac{0.25}{0.31}=\frac{1}{[1+\alpha(T-20)]}](https://tex.z-dn.net/?f=%5Cfrac%7B0.25%7D%7B0.31%7D%3D%5Cfrac%7B1%7D%7B%5B1%2B%5Calpha%28T-20%29%5D%7D)



T = 81.52 Deg C