I found this in a physics tab, I do t know why.
But your answer sir/ma’am is skeleton
Answer:
The mass of the banana is m and it is at height h.
Applying the Law of Conservation of Energy
Total Energy before fall = Total Energy after fall
=
Here, total energy is the sum of kinetic energy and potential energy
+
=
+
(a)
When banana is at height h, it has
= 0 and
= mgh
and when it reaches the river, it has
= 1/2m
and
= 0
Putting the values in equation (a)
0 + mgh = 1/2m
+ 0
mgh = 1/2m
<em>cutting 'm' from both sides</em>
<em> </em>gh = 1/2
v = 
Hence, the velocity of banana before hitting the water is
v = 
Answer:
389.78681 K
Explanation:
= Initial pressure = 55.1 mmHg
= Final pressure = 1 atm = 760 mmHg
= Boiling point
= Initial temperature = 35°C
= Heat of vaporization = 32.1 kJ/mol
From the Clausius-Claperyon equation

The normal boiling point of the substance is 389.78681 K
The answer is 9.8, did this last year in AP Science