Transmission electron microscope
The kayaker has velocity vector
<em>v</em> = (2.50 m/s) (cos(45º) <em>i</em> + sin(45º) <em>j</em> )
<em>v</em> ≈ (1.77 m/s) (<em>i</em> + <em>j</em> )
and the current has velocity vector
<em>w</em> = (1.25 m/s) (cos(315º) <em>i</em> + sin(315º) <em>j</em> )
<em>w</em> ≈ (0.884 m/s) (<em>i</em> - <em>j</em> )
The kayaker's total velocity is the sum of these:
<em>v</em> + <em>w</em> ≈ (2.65 m/s) <em>i</em> + (0.884 m/s) <em>j</em>
That is, the kayaker has a velocity of about ||<em>v</em> + <em>w</em>|| ≈ 2.80 m/s in a direction <em>θ</em> such that
tan(<em>θ</em>) = (0.884 m/s) / (2.65 m/s) → <em>θ</em> ≈ 18.4º
or about 18.4º north of east.
Alcohol filled thermometer is used for low temperature applications. (Weather) It’s freezing point is -70 degC
While mercury freezes at -38 deg C
Mercury is/was better for human and other animal temps. High thermal coefficient of expansion mercury vs. alcohol = better resolution for small temperature changes in a medical application.
For higher temperatures alcohol will boil before mercury will.
It is commonly perceived as "thickness", or resistance to pouring. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a low viscosity, while vegetable oil is "thick" having a high viscosity.
Given:
P1 = 400 kPa
T1 = 110 K
T2 = 235K
Required:
P2
Solution:
Apply Gay-Lussac’s
law where P/T = constant
P1/T1 = P2/T2
P2 = T2P1/T1
P2 = (235K)(400kPa)
/ (110K)
P2 = 855 kPa