Answer:
The solution code is written in Java.
- public class Movie {
- private double [][] seats = new double[5][5];
- private double totalSales;
-
- public Movie(){
-
- for(int i= 0; i < this.seats.length; i++){
- for(int j = 0; j < this.seats[i].length; j++){
- this.seats[i][j] = 12;
- }
- }
-
- this.totalSales = 0;
- }
-
- public boolean bookSeat(int i, int j)
- {
- if(this.seats[i][j] != 0){
- this.totalSales += this.seats[i][j];
- this.seats[i][j] = 0;
- return true;
- }else{
- return false;
- }
-
- }
- }
Explanation:
The method, bookSeat(), as required by the question is presented from Line 16 - 26 as part of the public method in a class <em>Movie</em>. This method take row,<em> i</em>, and column,<em> j</em>, as input.
By presuming the seats is an two-dimensional array with all its elements are initialized 12 (Line 7 - 10). This means we presume the movie ticket price for all the seats are $12, for simplicity.
When the<em> bookSeat() </em>method is invoked, it will check if the current price of seats at row-i and column-i is 0. If not, the current price, will be added to the <em>totalSales </em>(Line 19)<em> </em>and then set the price to 0 (Line 20) and return <em>true</em> since the ticket is successfully sold (Line 21). If it has already been sold, return <em>false</em> (Line 23).
Answer:
Hello there, please check step by step explanations to get answers.
Explanation:
Given that:
5-hp single-cylinder engine is used. At most, the belt transmits 60 percent of this power. The driving sheave has a diameter of 6.2 in. and the driven, 12.0 in. The belt selected should be as close to 92 in pitch length as possible. The engine speed is governor-controlled to a maximum of 3100 rev/min. Select a satisfactory belt, and specify it using the standard designation.
See attached documents for clearity and step by step procedure to answer
Answer:
The maximum length of the specimen before the deformation was 358 mm or 0.358 m.
Explanation:
The specific deformation ε for the material is:
(1)
Where δL and L represent the elongation and initial length respectively. From the HOOK's law we also now that for a linear deformation, the deformation and the normal stress applied relation can be written as:
(2)
Where E represents the elasticity modulus. By combining equations (1) and (2) in the following form:

So by calculating ε then will be possible to find L. The normal stress σ is computing with the applied force F and the cross-sectional area A:



Then de specific defotmation:

Finally the maximum specimen lenght for a elongation 0f 0.45 mm is:

Answer:
The correct answer is letter "C": Both.
Explanation:
Industrial seals are used at interfaces between components to prevent leakage, to maintain heat, and to avoid contamination. The design, construction, and materials they use vary depending on industrial use but the most common are Polytetrafluoroethylene (PTFE), Nitrile Buna Rubber (NBR), and fluorocarbon.
Thus, using a sharp chisel could pry a seal out of a hole and a regular socket can often be used to force smaller metal-backed seals into place. Thus, technicians "A" and "B" are correct.