Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
Acceleration = final velocity - inital / time
a = 75-10 / 7
a = 65 / 7
a = 9.29 m/s^2
<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>
The amount of solid does not affect how you are describing the solid so a is the answer
Answer:
Arrange an annual service. Treat your boiler like your car. ...
Keep your boiler clean. ...
Bleed your radiators. ...
Top up the pressure. ...
Use a Powerflush. ...
Insulate your pipes. ...
Turn the heating on. ...
If all else fails…
Explanation: