Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons
BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
Answer:
The temperature of the Earth depends on many factors, including the concentration of greenhouse gases such as water vapour, methane and carbon dioxide. The Earth's temperature also depends on the rates at which light radiation and infrared radiation are: absorbed by the Earth's surface and atmosphere.