Answer:
See figure 1
Explanation:
We have to remember that in the isomer structures we have to <u>change the structure</u> but we have to maintain the <u>same formula</u>, in this case
.
In the formula, we have 1 nitrogen atom. Therefore we will have as a main functional group the <u>amine group</u>.
In the amines, we have different types of amines. Depending on the number of carbons bonded to the "N" atom. In the <em>primary amines</em>, we have only 1 C-H. In the <em>secondary amines</em>, we have two C-N bonds and in the <em>tertiary amines</em>, we have three C-N bonds.
With this in mind, we can have:
-) <u>Primary amines:</u>
1) n-butyl amine
2) sec-butyl amine including 2 optical isomers
3) isobutyl amine
4) tert-butyl amine
-) <u>Secondary amines:</u>
5) N-methyl n-propyl amine
6) N-methyl isopropyl amine
7) N, N-diethyl amine
-) <u>Tertiary amines:</u>
8) N-ethyl N, N-dimethyl amine
See figure 1
I hope it helps!
I believe it should be A. Increased reaction rate due to the increased number of collisions between particles.
Answer:
Inferred that fossils were once part of living animals.
Explanation:
He realized that seashells that were from rocks were identical to ones on a beach.
Hope this helps. Plz mark as brainliest!
Have a great day and plz follow me! :)
Einstein's famous equation, E = mc^2 relates the mass (m) of an object to energy (E). The speed of light (c), is the constant of proportionality. Einstein formulated the equation within his theory of special relativity. Indeed, a physical interpretation of this equation is that any given mass is equivalent to the energy given by the equation, if it were suddenly converted to energy. Therefore the answer to the question is true.