Answer:
They Are all O's/oberavtions, because inference is using facts and reasoning, which is not the case here.
Explanation:
Answer:
2 H2(g) + O2(g) → 2 H2O(ℓ) ΔH = −570 kJ
Explanation:
The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams
Answer:
because the number of constitutional confirmation , and geometric isomers goes up with each carbon atom added there are many more possible configurations and connectivities possible with decane , a 10 carbon chain , than with butane, a 4 carbon chain
You can stop the burning of methane with water or carbon dioxide extinguishers but problems arise when you try to use this to stop the burning of the magnesium.
Explanation:
To burn magnesium (Mg) and methane (CH₄) you need to react them with oxygen:
2 Mg (s) + O₂ (g) → 2 MgO + heat
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O (g) + heat
However at that temperatures magnesium (Mg) is able to react with water (H₂O) and carbon dioxide (CO₂).
Mg (s) + 2 H₂O (l) → Mg(OH)₂ (s) + H₂ (g)
2 Mg (s) + CO₂ (g) → 2 MgO (s) + C (s)
So the safe option to stop the burning of the magnesium is to limit the oxygen in the air.
we have used the following notations:
(s) - solid
(g) - gas
(l) - liquid
Learn more about:
combustion reactions
brainly.com/question/13824679
#learnwithBrainly