1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
12

If a thief jumps from the tried floor of a house while holding a box on

Physics
2 answers:
Ksju [112]3 years ago
7 0
What do you mean? it doesn't make sense
Firdavs [7]3 years ago
3 0
What do I mean it makes no sense
You might be interested in
What is the current in a 10V Circuit if the resistance is 2 ohms
VladimirAG [237]
V=IR can be changed to V/R=I so 10V/2 ohms = 5amps so 5 amps is your answer boss
8 0
3 years ago
Ok I have no clue for this one I’m not sure what to make out of this one please help
MatroZZZ [7]

Helium, Neon, and Xenon are all part of the same column on the Periodic Table. Such a column is referred to as a Group, because they have the same number of valence electrons in their outermost shell. Hope this helps!

5 0
3 years ago
Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
maksim [4K]

Answer:

0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz

Explanation:

The fundamental frequency of a standing wave on a string is given by

f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}

where

L is the length of the string

T is the tension in the string

\mu is the mass per unit length

For the string in the problem,

L = 30.0 m

\mu=9.00\cdot 10^{-3} kg/m

T = 20.0 N

Substituting into the equation, we find the fundamental frequency:

f=\frac{1}{2(30.0)}\sqrt{\frac{20.0}{(9.00\cdot 10^{-3}}}=0.786 Hz

The next frequencies (harmonics) are given by

f_n = nf

with n being an integer number and f being the fundamental frequency.

So we get:

f_2 = 2 (0.786 Hz)=1.572 Hz

f_3 = 3 (0.786 Hz)=2.358 Hz

f_4 = 4 (0.786 Hz)=3.144 Hz

6 0
4 years ago
To apply Problem-Solving Strategy 12.2 Sound intensity. You are trying to overhear a most interesting conversation, but from you
Ivenika [448]

Answer:

r₂ = 0.316 m

Explanation:

The sound level is expressed in decibels, therefore let's find the intensity for the new location

            β = 10 log \frac{I}{I_o}

let's write this expression for our case

           β₁ = 10 log \frac{I_1}{I_o}

           β₂ = 10 log \frac{I_2}{I_o}

           

          β₂ -β₁ = 10 ( log \frac{I_2}{I_o} - log \frac{I_1}{I_o})

          β₂ - β₁ = 10 log \frac{I_2}{I_1}

          log \frac{I_2}{I_1} = \frac{60 - 20}{10} = 3

           \frac{I_2}{I_1} = 10³

           I₂ = 10³ I₁

having the relationship between the intensities, we can use the definition of intensity which is the power per unit area

           I = P / A

           P = I A

the area is of a sphere

          A = 4π r²

           

the power of the sound does not change, so we can write it for the two points

          P =  I₁ A₁ =  I₂ A₂

          I₁ r₁² = I₂ r₂²

we substitute the ratio of intensities

          I₁ r₁² = (10³ I₁ ) r₂²

         r₁² = 10³ r₂²

         

         r₂ = r₁ / √10³

         

we calculate

          r₂ = \frac{10.0}{\sqrt{10^3} }

          r₂ = 0.316 m

8 0
3 years ago
Ahmad is riding his bicycle. He finds that he can accelerate from rest at 0.44 m/s^2 for 5 s to reach a speed of 2.2 m/s. The to
snow_lady [41]

Answer:

1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N

2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N

Therefore, Christian has to exert more force on his bike after picking up the cargo

Explanation:

The given parameters are;

The mass of Christian and his bicycle = 54 kg

The mass of the cargo = 12 kg

1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity

∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N

2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N

Therefore, Christian has to exert more force on his bike after picking up the cargo.

7 0
3 years ago
Other questions:
  • A 10,000-watt radio station transmits at 535 kHz.
    13·2 answers
  • sing a rope that will snap if the tension in it exceeds 361 N, you need to lower a bundle of old roofing material weighing 455 N
    6·1 answer
  • A 6.5 l sample of nitrogen at 25◦c and 1.5 atm is allowed to expand to 13.0 l. the temperature remains constant. what is the fin
    14·1 answer
  • A baby elephant weighs 250 pounds on Earth. How much would the elephant weigh on Saturn?
    12·1 answer
  • Visible light travels at a speed 3.0 × 108 of m/s. If red light has a wavelength of 6.5 × 10–7 m, what the frequency of this lig
    7·1 answer
  • Tom has built a large slingshot, but it is not working quite right. He thinks he can model the slingshot like an ideal spring, w
    9·1 answer
  • A disk with a diameter of 0.05 m is spinning with a constant velocity about an axle perpendicular to the disk and running throug
    5·1 answer
  • 1
    8·1 answer
  • How can you degauss a magnet temporarily?
    5·1 answer
  • A 63.0kg sprinter starts a race with an acceleration of 24.0m/s/s . what is the net force of him
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!