Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:
The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction = 0.8325;
If we want to find:
Then:
Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
wrong. If its for the study island its potential energy only.
We know that to relate solutions of with the factors of molarity and volume, we can use the equation:
**
NOTE: The volume as indicated in this question is defined in L, not mL, so that conversion must be made. However it is 1000 mL = 1 L.
So now we can assign values to these variables. Let us say that the 18 M
is the left side of the equation. Then we have:
We can then solve for
:
and
or
We now know that the total amount of volume of the 4.35 M solution will be
210 mL. This is assuming that the entirety of the 50 mL of 18 M is used and the rest (160 mL) of water is then added.
<h2>Natural Abundance for 10B is 19.60%</h2>
Explanation:
- The natural isotopic abundance of 10B is 19.60%.
- The natural isotopic abundance of 11B is 80.40%.
- The isotopic masses of boron are 10.0129 u and 11.009 u respectively.
For calculation of abundance of both the isotopes -
Supposing it was 50/50, the average mass would be 10.5, so to increase the mass we need a more percentage of 11.
Determining it as an equation -
10x + 11y= 10.8
x+y=1 (ratio)
10x + 10y = 10
By taking the denominator away from the numerator
we get;
y = 0.8
x + y = 1
∴ x = 0.2
To get percentages we need to multiply it by 100
So, the calculated abundance is 80% for 11 B and 20% 10 B.
There are 7 signifigant figures in this number!