Answer:
The answer would either be Carbon or Silicon.
Explanation:
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
I got 134.91 but if you round it you’ll get 135
Answer:
8.0356 * 10^-5 moles of NaHCO3
Explanation:
Sulphuric acid = H2SO4
Sodium bicarbonate = NaHCO3
The reaction between both compounds is given by;
2NaHCO3(aq) + H2SO4(aq) → Na2SO4(aq) + 2CO2(g) + 2H2O(l)
In the reactin above;
2 mol of NaHCO3 neutralizes 1 mol of H2SO4
At stp, 1 mol occupies 22.4 L;
1 mol = 22.4 L = 22400 mL
x mol = 0.9 mL
x = 0.9 / 22400 = 4.0178 * 10^-5 moles of H2SO4
Since 2 mol = 1 mol from the equation;
x mol = 4.0178 * 10^-5
x mol = 2 * 4.0178 * 10^-5
x = 8.0356 * 10^-5 moles of NaHCO3
Answer:
Explanation:
1) Find number of each of the type of atom that is present in the compound, using the chemical formula .
2) Then multiply number of atoms of each element that is present in the compound with the atomic weight of each of the element
3) Add everything together and add the units (grams/mole ) after the number
Let finds that of water
Chemical formula of water is (H20 )
hydogens atoms= 2
oxygen atom= 1
Atomic weight for Hydrogen= 1
Atomic weight for Oxygen= 16
Total number of atoms of Hydrogen from the formula (H2O)= 2
Total number of atoms of Oxygen from the formula (H2O)= 1
the molar mass=
Hydrogen: ( 2 x 1)= 2
Oxygen: ( 1 x 16)= 16
Add together= (16+2)
= 18
Then add the unit, we have(18 g/mol.)