Answer:
See the explanation below.
Explanation:
The units of work are consistent since if we work in the international system of measures we have the following dimensional quantities for velocity, distance and time.
s = displacement [m]
v and u = velocity [m/s]
t = time [s]
Now using these units in the given equation.
![s = 0.5*([m/s]+[m/s])*[s]\\s=0.5*[m/s]*[s]\\s = 0.5*[m]](https://tex.z-dn.net/?f=s%20%3D%200.5%2A%28%5Bm%2Fs%5D%2B%5Bm%2Fs%5D%29%2A%5Bs%5D%5C%5Cs%3D0.5%2A%5Bm%2Fs%5D%2A%5Bs%5D%5C%5Cs%20%3D%200.5%2A%5Bm%5D)
So the expression is good, and dimensional has consistency.
Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Answer:
15.106 N
Explanation:
From the given information,
The weight of the bucket can be calculated as:

The mass of the water accumulated in the bucket after 3.20s is:


To determine the weight of the water accumulated in the bucket, we have:



For the speed of the water before hitting the bucket; we have:


v = 8.4 m/s
Now, the force required to stop the water later when it already hit the bucket is:


F = 1.68 N
Finally, the reading scale is:
= 7.154 N + 6.272 N + 1.68 N
= 15.106 N